

Beyond Li-Ion – 2012

Beyond Lithium-Ion: A Reality Check

M. Stanley Whittingham,

Chemistry and Materials Science State University of New York Binghamton, NY, USA http://materials.binghamton.edu

© M. S. Whittingham 2012

Abstract

- ➤ Although current Lithium-ion batteries dominate the portable electrochemical storage market, there is limited room for improvement. They have a theoretical energy density approaching 1 kWh/kg, but in practice deliver no more than 200 Wh/kg. Similarly within a year they will be delivering close to 1 kWh/liter, over 30% of theoretical.
- ➤ Metal (lithium) oxygen and Lithium sulfur have the capability to exceed these values on a weight basis, and indeed Li/S already does. However, their volumetric capacities are likely to be significantly lower than Li-ion even if all the technical challenges are overcome. I will discuss the opportunities and challenges.
- > This work is being supported by NYSERDA.

Outline and Challenges

- ➤ Where have we come from?
- > Where are we today?
 - > What is the status of intercalation batteries?
- ➤ What are tomorrow's needs?
 - · Lower-cost higher energy batteries that are safe
 - · Higher volumetric critical for mobile applications
 - · Anode limits volumetric energy density
 - Can we use pure metal anodes?
- ➤ Are conversion reactions the answer?
 ➤ Can the grand challenge of a "simple" O₂ or S battery be achieved?
 - · Lithium/air, (or zinc, magnesium or aluminium)
 - Can we control air or water?
 - Is it worth achieving (aka what is the real storage capacity)?

Redox Intercalation Cathodes for Lithium Ion Batteries

First Generation (1977):

Layered Sulfides.

TiS2 - LiAl - Exxon

One Lithium to transition metal ratio

- 480 Wh/kg (240 Ah/kg)

First Commercial Success (1991):

Layered Oxides.

LiCoO₂ - LiC₆ - SONY

0.5 Li to Co cycling - 480 Wh/kg

Today - 2012:

Mixed layered oxides.

Li(NiMnCoAl)O₂ – electronics, etc

LiFePO₄(& LiMnPO₄?)

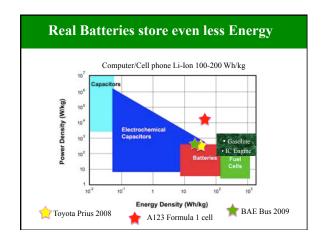
EV Show Chicago, 1976

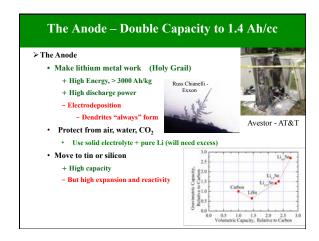
> BAE Systems, Binghamton 11 kWh Li-ion >2000 HEV buse

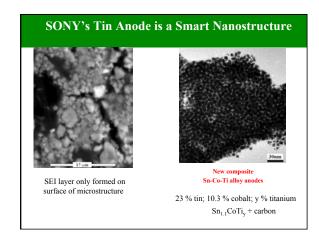
AES, Binghamton

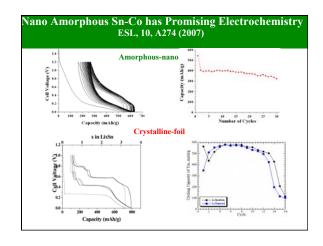
Lithium Dominates the Portable Energy Storage Market Now Pushing into the Stationary Market

AES, Binghamton 8 MW Li-ion (flooded)

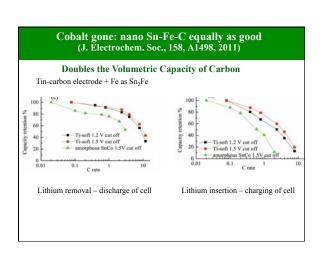

Intercalation Batteries can be Improved

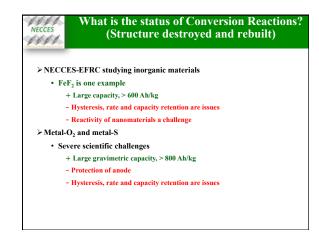

Most of the Energy is Lost in Cell Construction (Carbon anode major contributor)

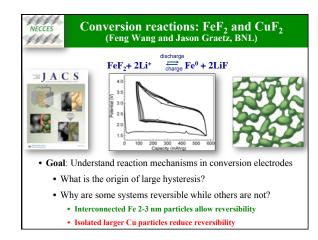

Chemistry	Size	Wh/L theoretical	Wh/L actual	%	Wh/kg theoretical	Wh/kg actual	%
LiFePO ₄	54208	1980	292	14.8	587	156	26.6
LiFePO ₄	16650	1980	223	11.3	587	113	19.3
LiMn ₂ O ₄	26700	2060	296	14.4	500	109	21.8
LiCoO ₂	18650	2950	570	19.3	1000	250	25.0
Si-LiMO ₂ Panasonic	18650	2950	919	31.2	1000	252	25.2

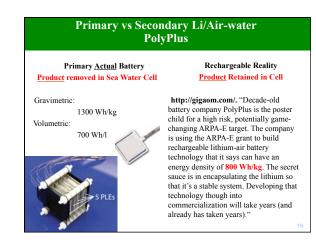

The theoretical values in the table assume only the active components, and no volume or weight for lithium beside that in the cathode.

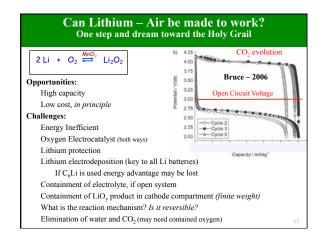
IEEE Proceedings, Vol. 100, 1518 (2012)

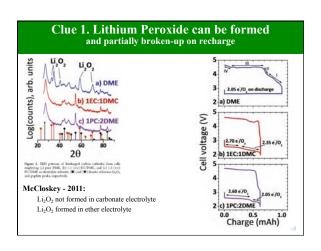


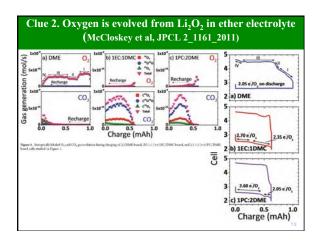








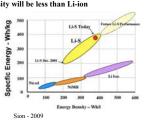

What is the status of Intercalation Batteries Li-ion intercalation batteries Approach 800 Wh/kg (excluding C anode) + Lab experimental data + Includes all active components (including oxygen) - Cost, beyond raw material, is an issue + Find low cost manufacturing methods Volumetric capacity hurt by: - Carbon anode - Carbon and binder in cathodes - Use of nanomaterials - Electrodes need to be thicker



What is the reaction mechanism of Li-Air?

- ➤ Aqueous system
 - LiOH
 - · Soluble, maybe more easily recharged
- ➤ Non-aqueous system
 - O2 + Li gives LiO2, then what?
 - Ideally Li₂O₂ then Li₂O
 - In reality, ${\rm LiO_2}$ reacts with carbonate solvents, but
 - · Ethers show some stability
 - Reaction is reversible, ${\rm ^{18}O_{2}}$ in and out at low potentials
 - At higher potentials CO₂ evolved from solvent
 - · Suggests that electrocatalyst may not be desirable/effective
 - McCloskey, JACS 2011
 - Theory (Ceder) suggests that charging overpotential is function of $\rm Li_2O_2$ crystal face (Phys Rev 2011)

What is the real storage capacity of Li-Air? (Based on Li₂O₂)


- ► Lab Energy density may be double that of Li-ion if all works out well
- ► Lab Volumetric energy density same as Li-ion
 - ➤ Likely to be much lower, pumps/air ingress etc

System	Energy Density Wh/kg	Energy Density Wh/L	Assumptions Made	
C-Lithium-ion	416	1450	3.7 volts, 180 Ah/kg actual cathode	
C-Lithium-air	706	1600	2.5 volts, no weight added for catalyst or carbon	
Lithium-LiMO ₂ 971		2000	4 volts, 278 Ah/kg cathode, 3 x Li	
Lithium-air 2050		2090	2.8 volts, 3xLi, no catalyst, carbon or solid electroly	

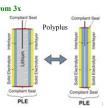
IEEE Proceedings, Vol. 100, 1518 (2012)

What is the real storage capacity of Li-O₂ vs Li-S?

- ► Lab Li-O₂ Energy density may be double that of Li-ion if all works out well
 - Li-S much higher than Li-ion, possibly higher than Li-air
- **▶ Lab** Li-O₂ Volumetric energy density will be less than Li-ion
 - · Li-S less than Li-ion

Other Metal-Oxygen Cells may be attractive

Metal/Oxygen Energy Densities (ED)


metal oxygen Energy Densities (ED)								
	ΔG	V,	ED	ED				
MeO	kJ/O ₂	Volts	Wh/kg	Wh/L				
CaO	1200	3.11	2972	9960				
MgO	1170	3.03	4032	14400				
Li ₂ O ₂	1150	2.98	3487	8050				
Li ₂ O	1130	2.93	5252	10600				
Al ₂ O ₃	3 1060	2.75	4332	17300				
Na ₂ O	760	1.97	1703	3870				
ZnO	650	1.68	1109	6220				

Conclusions – Li-Air/S Batteries

- \succ Need fundamental research on reaction mechanisms
 - Non-aqueous more difficult, need some solubility of ${\rm Li_2O_2}$
- · Aqueous may be easier
- ➤ Need fundamental research on the lithium anode helps all Li batteries
 - Electrodeposition no dendrites
 - Reduce amount of excess lithium needed from 3x

➤ Need an impervious stable (dual) electrolyte

· Ceramic or polymer

